Date :-15/01/2022

Time :-25 Minutes

Exam Name :-MHTCET-1to1Guru-2 Mark :- 30

- 1. When 0.2 kcal of heat is supplied to a gas, it expands by 2.1 litres against an external pressure of 10^5 N/m^2 , then calculate increase in internal energy.
- (a) 840 | (b) 1050 | (c) 210 | (d) 630 |
- 2. A metal surface having work function w_0 emits photoelectrons when photons of energy E are incident on it. The electron enters the uniform magnetic field
- (a) in perpendicular direction and moves in circular path of radius 'r'. Then 'r' is equal to (m and e be the mass and charge of electron respectively).

(b)
$$\frac{m(E-w_0)}{eB}$$
 (c) $\frac{\sqrt{m(E-w_0)}}{eB}$ (d) $\frac{2m(E-w_0)}{eB}$

- 3. Magnification at least distance of distinct vision of a simple microscope having its focal length 5 cm is
- (a) 2 (b) 4 (c) 5 (d) 6
- 4. Ideal gas for which ' γ ' = 1.5 is suddenly compressed to $\frac{1}{4}$ th of its initial volume. The ratio of the final pressure to the initial pressure is $\left(\gamma = \frac{C_P}{C_V}\right)$ [MHT-CET 2020]
- (a) 4:1 (b) 8:1 (c) 1:16 (d) 1:8
- **5.** Two conducting circular loops of radii R_1 and R_2 are placed in the same plane with their centres coinciding. If $R_1 > R_2$, the mutual inductance M between them will be directly proportional to

(a)
$$\frac{R_1}{R_2}$$
 (b) $\frac{R_2}{R_1}$ (c) $\frac{R_1^2}{R_2}$ (d) $\frac{R_2^2}{R_1}$

6. Two metal spheres of radii \mathbb{R}_1 and \mathbb{R}_2 are charged to the same potential. The ratio of charges on the spheres is

(a)
$$\sqrt{R_1}: \sqrt{R_2}$$
 (b) $R_1: R_2$ (c) $R_1^2: R_2^2$ (d) $R_1^3: R_2^3$

- 7. An _____ diode offers zero resistance in forward biased mode and infinite resistance in reverse biased mode.
- (a) Ideal (b) Forward biased (c) Reverse biased
- (d) None of these

- **8.** Phenetole react with cold HI gives
- (a) C_6H_5 -I+ C_2H_5 -OH (b) C_2H_5 -I+ C_6H_5 -OH
- (c) $C_6H_5CH_2 OH + C_2H_5 I$
- (d) $C_6H_5 OH + CH_3 CH_2 CH_2OH$
- **9.** Which alloy used to prepare antiknocking agent in petrol?
 - (a) Bronze alloy (b) Na-Pb alloy (c) Li Pb alloy
 - (d) K-Pb alloy
- **10.** Number of gram atoms of an element present in one atom of the element is [MHT-CET 2019]
- (a) 1.66×10^{-23} (b) 6.022×10^{23} (c) 1.66×10^{-24}
- (d) 6.022×10^{22}
- 11. CH₃CONH₂. Br₂ and KOH give CH₃NH₂ as the product. The intermediates of the reaction are (A)

$$\begin{array}{c}
O \\
\parallel \\
CH_3-C-NHBr
\end{array}$$
B) $CH_3-N=C=0$
(C) $CH_3NHBr(D)CH_3CONBr_2$

The correct answer is

- (a) A, B (b) A, C (c) C, D (d) B, D
- 12. 0.5 mole of each of H₂, SO₂ and CH₄ are kept in a container. A hole was made in the container. After 3 h, the order of partial pressures in the container will be

(a)
$$pSO_2 > pH_2 > pCH_4$$
 (b) $pSO_2 > pCH_4 > pH_2$

(c)
$$pH_2 > pSO_2 > pCH_4$$
 (d) $pH_2 > pCH_4 > pSO_2$

13. Which of the following ions is coloured in solution?

(a)
$$Zn^{2+}$$
 (b) Ti^{4+} (c) Cu^{+} (d) V^{2+}

- **14.** Which of the following reagent form oxime with carbolnyl compounds?
- (a) NH₃OH (b) NH₂OH (c) NaOH (d) CH₂N₂
- 15. The volume of solid generated by revolving the area bounded by the parabola $x^2 = y$, and the lines y = 2x about X-axis is

(a)
$$\frac{4\pi}{15}$$
 cu. units (b) $\frac{16\pi}{15}$ cu. units (c) $\frac{64\pi}{15}$ cu. units

(d)
$$\frac{256\pi}{15}$$
 cu. units

16. If
$$f(x) = \frac{|x-2|}{x-2}$$
, for $x \neq 2$

= 1, for x = 2,

Then which of the following statements is true? [MHT-CET 2020]

(a)
$$\lim_{x\to 2^+} f(x) = f(2)$$

(b)
$$f(x)$$
 is discontinuous at $x = 2$

(c)
$$\lim_{x\to 2^-} f(x) = f(2)$$

(d)
$$f(x)$$
 is continuous at $x = 2$

The value of sin 15° is

(a)
$$\frac{\sqrt{3}+1}{2\sqrt{2}}$$

(b)
$$\frac{\sqrt{3}-1}{2\sqrt{2}}$$

(a)
$$\frac{\sqrt{3}+1}{2\sqrt{2}}$$
 (b) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ (c) $\frac{3+\sqrt{3}}{2\sqrt{2}}$

(d) None of these

18. The value of
$$\lim_{x\to a} \left(\frac{x^2 - (a+1)x + a}{x^3 - a^3} \right)$$
 is

(a)
$$\frac{a+1}{3a^2}$$
 (b) $\frac{a+1}{a^2}$ (c) $\frac{a-1}{3a^2}$ (d) $\frac{a-1}{a^2}$

The means of two samples of sizes 60 and 120 respectively are 35.4 and 30.9 and standard

deviations are 4 and 5. What is the standard deviation of the sample of size 180 obtained by combining the two samples?

20. Degree of the differential equation
$$\frac{d^3y}{dx^3} + 5\left(\frac{dy}{dx}\right)^2 = e^{\frac{dy}{dx}}$$
 Is

How many words can be formed from the letters of the word ARTICLE, if vowels always comes at the odd places?

(a) 60 (b) 576 (c)
$$\frac{7!}{3!}$$
 (d) 120

If $\theta = \sin^{-1} x + \cos^{-1} x - \tan^{-1} x$, $x \ge 0$, then the smallest interval in which – is given by:

(a)
$$\frac{\pi}{2} \le \theta \le \frac{3\pi}{4}$$
 (b) $0 < \theta < \pi$ (c) $-\frac{\pi}{4} \le \theta \le 0$

(d)
$$\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$$

www.1to1guru.com