Date :-04/02/2022 Time :-50 Minutes

Exam Name :-IIT-JEE-1to1Guru-4 Mark :- 84

PHYSICS

- 1. For a certain thermocouple the emf is $E = aT + bT^2$, where t (in °C) is the temperature of hot junction, the cold junction is at 0 °C. The value of contants a and b are 10×10^{-6} and 0.02×10^{-6} respectively, then the temperature of inversion (in °C) will be
- (a) 150 (b) 250 (c) 500 (d) 750
- 2. Avalanche breakdown is due to
- (a) Collision of minority charge carrier
- (b) Increase in depletion layer thickness
- (c) Decrease in depletion layer thickness
- (d) None of these
- 3. If we shift a body in equilateral from A to C in a gravitational field via path AC or ABC,

- (a) The work done by force \vec{F} for both paths will be same
- **(b)** $W_{AV} > W_{ABC}$ **(c)** $W_{AC} < W_{ABC}$
- (d) None of the above
- 4. Which of the following expressions corresponds to simple harmonic motion along a straight line, where x is the displacement and a, b, c are positive constants? [Online April 12, 2014]
- (a) $a + bx cx^2$ (b) bx^2 (c) $a bx + cx^2$
- (d) -bx
- 5. A block of weight W rests on a horizontal floor with coefficient of static friction μ . It is desired to make the block move by applying minimum amount of force. The angle θ from the horizontal at which the force should be applied and magnitude of the force F are respectively. [Online May 19, 2012]
- (a) $\theta = \tan^{-1}(\mu), F = \frac{\mu W}{\sqrt{1 + \mu^2}}$
- **(b)** $\theta = \tan^{-1}\left(\frac{1}{\mu}\right), F = \frac{\mu W}{\sqrt{1+\mu^2}}$ **(c)** $\theta = 0, F = \mu W$

(d) $\theta = \tan^{-1}\left(\frac{\mu}{1+\mu}\right), F = \frac{\mu W}{1+\mu}$

NUMARIC QUESTIONS

- **6.** A small body of mass m is connected to two horizontal springs of elastic constant k, natural length 3d/4. In the equilibrium position both springs are stretched to length d, as shown figure. What will be the ratio of period of the motion (T_b/T_a) if the body is displaced horizontally by a small distance where T_a is the time period when the particle oscillates along the line of springs and T_b is time period when the particle oscillates perpendicular to the plane of the figure? Neglect effects of gravity
- 7. There are two radio nuclei A and B. A is an alpha emitter and B a beta emitter. Their disintegration constants are in ratio of 1:2. The ratio of number of atoms of A and B at any time t so that probabilities of getting alpha and beta particles are same at that instant is -

CHEMISTRY

- 8. Consider the following reactions I: $AlH_3 + H^- \rightarrow AlH_4^- II$: $H_2O + H^- \rightarrow H_2 + OH^-$ Select the correct statements based on these reactions
- (a) H⁻ is a Lewis acid in I and Lewis base in II
- (b) H⁻ is a Lewis base in I and Bronsted base in II
- (c) H⁻ is a Lewis acid in I and Bronsted acid in II
- (d) H⁻ is a Lewis base in I and II
- **9.** One of the following metals is obtained by leaching its ore with dilute cyanide solution. Identify it.
- (a) Titanium (b) Vanadium (c) Silver (d) Zinc
- 10. The product of acid hydrolysis of P and Q can be distinguish by

 $P = H_2C$ CH_3 $Q = H_3C$ CH_3 $COCH_3$

- (a) Lucas reagent (b) 2, 4-DNP
- (c) Fehling s solution (d) NaHSO₃
- 11. Partial pressure of O_2 in the reaction $2Ag_2O(s) \rightleftharpoons 4Ag(s) + O_2(g)$ is

- (a) K_p (b) $\sqrt{K_p}$ (c) $3\sqrt{K_p}$ (d) $2K_p$
- **12.** The mole fraction of solute in one molal aqueous solution is:
- **(a)** 0.009 **(b)** 0.018 **(c)** 0.027 **(d)** 0.036

NUMARIC QUESTIONS

- 13. One mole of a Vanderwaals gas at 300 K expands isothermally and reversibly from volume 10.064 L to 50.064 L. Vanderwaals constant $a = 5 \text{ lit}^2 \text{ atm mol}^{-2}$ and
- b = 0.064 L/mole log 3 = 0.48; log 2 = 0.3; log 5 = 0.7 Determine the work done by the system in J/mole in nearest possible integers.
- **14.** Effective atomic number (EAN) of Fe in brown ring complex $[Fe(H_2O)_5NO]^{2+}$

MATHMATICS

15. If the AM and GM of roots of a quadratic equations are 8 and 5 respectively, then the quadratic equation will be

(a)
$$x^2 - 16x - 25 = 0$$
 (b) $x^2 - 8x + 5 = 0$

(c)
$$x^2 - 16x + 25 = 0$$
 (d) $x^2 + 16x - 25 = 0$

16. Equation of chord of the parabola $y^2 = 16x$ whose mid point is (1, 1), is

(a)
$$x + y = 2$$
 (b) $x - y = 0$ (c) $8x + y = 9$

(d)
$$8x - y = 7$$

17. The tangents from a point $(2\sqrt{2},1)$ to the hyperbola $16x^2 - 25y^2 = 400$ include an angle equal to

(a)
$$\pi/2$$
 (b) $\pi/4$ (c) π (d) $\pi/3$

- 18. The coefficient of x^{-10} in $\left(x^2 \frac{1}{x^3}\right)^{10}$ is
- (a) -252 (b) 210 (c) -(5!) (d) -120
- 19. The number of discontinuities of the greatest integer function $f(x) = [x], x \in \left(-\frac{7}{2}, 100\right)$ is equal
- **(a)** 104 **(b)** 100 **(c)** 102 **(d)** 103

NUMARIC QUESTIONS

- **20.** In \triangle ABC, AB = 1, BC = 1 & AC = $\frac{1}{\sqrt{2}}$. In \triangle MNP, MN = 1, NP = 1 & MNP = 2 ABC. Then side MP equals $\frac{\sqrt{k^3 1}}{k}$ find k
- 21. If \overline{a} , \overline{b} , \overline{c} are non-coplanar vectors and \overline{a} , \overline{b} , \overline{c} form reciprocal system of \overline{a} , \overline{b} , \overline{c} respectively then find the value of $(\overline{a} + \overline{b})$. $\overline{a'} + (\overline{b} + \overline{c})$. $\overline{b'} + (\overline{c} + \overline{a})$. $\overline{c'}$.

www.1to1guru.com